注册找回密码

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 388|回复: 7

[天文算法] 《缉古算经》唐-王孝通

[复制链接]

1374

主题

32

好友

17万

积分
     

大学士

江都郡公光禄大夫

Rank: 33Rank: 33Rank: 33Rank: 33Rank: 33

精华
25
名望
24658 点
功勋
3307 点

帥印 学士勋章 貢獻勳章

发表于 2017-3-19 09:55:15 |显示全部楼层

4 B+ F2 I2 s$ E- A# C+ ~缉古算经3 T- J- \" Z  w
$ P. C# C+ C: y9 I- G5 S
上辑古算经表+ M- Z1 i7 w% e4 W# n2 H5 G

% w) u4 A' X- [. H5 F) J  臣孝通言:臣闻九畴载叙,纪法著于彝伦;六艺成功,数术参于造化。夫为君上者,司牧黔首,布神道而设教,采能事而经纶,尽性穷源,莫重于算。昔周公制礼,有九数之名。窃寻九数,即《九章》是也。其理幽而微,其形秘而约,重句聊用测海,寸木可以量天,非宇宙之至精,其孰能与于此者?汉代张苍删补残缺,校其条目,颇与古术不同。魏朝刘徽笃好斯言,博综纤隐,更为之注。徽思极毫芒,触类增长,乃造重差之法,列于终篇。虽即未为司南,然亦一时独步。自兹厥后,不断前踪。贺循、徐岳之徒,王彪、甄鸾之辈,会通之数无闻焉耳。但旧经残驳,尚有阙漏,自刘已下,更不足言。其祖恒之《缀术》,时人称之精妙,曾不觉方邑进行之术,全错不通;刍亭方亭之问,于理未尽。臣今更作新术,于此附伸。臣长自闾阎,少小学算。镌磨愚钝,迄将皓首。钻寻秘奥,曲尽无遗。代乏知音,终成寡和。伏蒙圣朝收拾,用臣为太史丞,比年已来,奉敕校勘傅仁均历,凡驳正术错三十余道,即付太史施行。伏寻《九章·商功篇》有平地役功受袤之术,至于上宽下狭、前高后卑,正经之内,阙而不论,致使今代之人不达深理,就平正之门,同欹邪之用。斯乃圆孔方柄,如何可安?臣昼思夜想,临书浩叹,恐一旦瞑目,将来莫睹,遂于平地之余,续狭斜之法,凡二十术,名曰《缉古》。请访能算之人,考论得失,如有排其一字,臣欲谢以千金。轻用陈闻,伏深战悚。谨言。' C6 `- o$ q5 m: N! u

' M/ t. `7 q! Y1 h+ W7 t) q8 r/ d6 L( }$ P- m
1 c% Y+ e* z/ y2 z/ i
缉古算经
- |) t. W" E, D9 l. O2 a' ?2 F9 E" w$ K' p- w
  假今天正十一月朔夜半,日在斗十度七百分度之四百八十。以章岁为母,朔月行定分九千,朔日定小余一万,日法二万,章岁七百,亦名行分法。今不取加时日度。问:天正朔夜半之时月在何处?(推朔夜半月度,旧术要须加时日度。自古先儒虽复修撰改制,意见甚众,并未得算妙,有理不尽,考校尤难。臣每日夜思量,常以此理屈滞,恐后代无人知者。今奉敕造历,因即改制,为此新术。旧推日度之术,巳得朔夜半日度,仍须更求加时日度,然知月处。臣今作新术,但得朔夜半日度,不须加时日度,即知月处。此新术比于旧术,一年之中十二倍省功,使学者易知)
3 _8 j: }7 `" L! @& E  答曰:在斗四度七百分度之五百三十。7 D1 \& i6 Z- i8 Z7 _9 C, W4 V
  术曰(推朔夜半月度,新术不复加时日度,有定小余乃可用之):以章岁减朔月行定分,余以乘朔日定小余,满日法而一,为先行分。不尽者,半法已上收成一,已下者弃之。若先行分满日行分而一,为度分,以减朔日夜半日所在度分,若度分不足减,加往宿度;其分不足减者,退一度为行分而减之,余即朔日夜半月行所在度及分也(凡入历当月行定分,即是月一日之行分。但此定分满章岁而一,为度。凡日一日行一度。然则章岁者,即是日之一日行分也。今按:《九章·均输篇》有犬追兔术,与此术相似。彼问:犬走一百走,兔走七十步,令免先走七十五步,犬始追之,问几何步追及?答曰:二百五十步追及。彼术曰:以兔走减犬走,余者为法。又以犬走乘兔先走,为实。实如法而一,即得追及步数。此术亦然。何者?假令月行定分九千,章岁七百,即是日行七百分,月行九千分。令日月行数相减,余八千三百分者,是日先行之数。然月始追之,必用一日而相及也。令定小余者,亦是日月相及之日分。假令定小余一万,即相及定分,此乃无对为数。其日法者,亦是相及之分。此又同数,为有八千三百,是先行分也。斯则异矣。但用日法除之,即四千一百五十,即先行分。故以夜半之时日在月前、月在日后,以日月相去之数四千一百五十减日行所在度分,即月夜半所在度分也)。
  @- A4 P& q+ [& T9 \, H  假令太史造仰观台,上广袤少,下广袤多。上下广差二丈,上下袤差四丈,上广袤差三丈,高多上广一十一丈,甲县差一千四百一十八人,乙县差三千二百二十二人,夏程人功常积七十五尺,限五日役台毕。羡道从台南面起,上广多下广一丈二尺,少袤一百四尺,高多袤四丈。甲县一十三乡,乙县四十三乡,每乡别均赋常积六千三百尺,限一日役羡道毕。二县差到人共造仰观台,二县乡人共造羡道,皆从先给甲县,以次与乙县。台自下基给高,道自初登给袤。问:台道广、高、袤及县别给高、广、袤各几何?
《太极物荷》:竞泥亭立玉节在,丝念开怀圆满长,来去乾坤并蒂敛,灵通物外太极随。
回复
分享到:

举报

1374

主题

32

好友

17万

积分
     

大学士

江都郡公光禄大夫

Rank: 33Rank: 33Rank: 33Rank: 33Rank: 33

精华
25
名望
24658 点
功勋
3307 点

帥印 学士勋章 貢獻勳章

发表于 2017-3-19 09:55:43 |显示全部楼层

6 e0 U, z8 Q7 }0 s3 R5 L/ x答曰:
, b$ G0 A* K; j, D; v  台高一十八丈
/ ?- Z# h+ G$ e; \; ]5 M/ J& Z  上广七丈,
% n) `3 L) r. }- L  下广九丈,# J' |% Y5 a& l% b+ c3 f
  上袤一十丈,
! N# [% _' |# c+ a+ C8 `1 L. u4 I  下袤一十四丈;
) T8 W6 Z* k8 {3 U  甲县给高四丈五尺,- t6 f% l8 d( Y. l* l6 l
  上广八丈五尺,, o# L. K( ]. a1 g* \
  下广九丈,+ g9 G3 ]3 z: Z. t
  上袤一十三丈,9 C" B8 u* j! j; N1 J9 i1 u! M
  下袤一十四丈;6 w( y' x+ a0 M- W
  乙县给高一十三丈五尺,
: D: ]! N8 P! z( n+ @  上广七丈,/ H  j1 M! F$ a6 b7 w5 ^% N4 T* n
  下广八丈五尺,
1 O. C6 O3 T1 B/ C  上袤一十丈,
8 `0 y7 e# ]% h- K/ i; ]3 i1 r  下袤一十三丈;
+ ^6 w* Z6 A$ m5 X3 H  羡道高一十八丈,2 E. z2 d1 g% X
  上广三丈六尺,
7 R. {6 M0 z+ Z: [% m  下广二丈四尺,
1 @/ p& ]( D  L/ E( M2 x  袤一十四丈;; ]' R# p0 k) }# }
  甲县乡人给高九丈,
  t6 C) w( o% ]6 q  上广三丈,- l5 K. j* F& [; |: d( c0 j" Z
  下广二丈四尺,
4 E; ^# k7 d! p) p# u  袤七丈;& C; u7 V3 a4 K* B4 l
  乙县乡人给高九丈,! M' h9 w+ C$ K) v* _/ S; c
  上广三丈六尺,
9 ?, `& x& n& J5 G  下广三丈,9 e& O; T0 s) N) P6 ~. L
  袤七丈。6 D0 z% ]* N, s2 O
  术曰:以程功尺数乘二县人,又以限日乘之,为台积。又以上下袤差乘上下广差,三而一,为隅阳幂。以乘截高,为隅阳截积。又半上下广差,乘斩上袤,为隅头幂。以乘截高,为隅头截积。并二积,以减台积,余为实。以上下广差并上下袤差,半之,为正数,加截上袤,以乘截高,所得增隅阳幂加隅头幂,为方法。又并截高及截上袤与正数,为廉法,从。开立方除之,即得上广。各加差,得台下广及上下袤、高。
: I! [, _! w2 X& q$ z& U  求均给积尺受广袤,术曰:以程功尺数乘乙县人,又以限日乘之,为乙积。三因之,又以高幂乘之,以上下广差乘袤差而一,为实。又以台高乘上广,广差而一,为上广之高。又以台高乘上袤,袤差而一,为上袤之高。又以上广之高乘上袤之高,三之,为方法。又并两高,三之,二而一,为廉法,从。开立方除之,即乙高。以减本高,余即甲高。此是从下给台甲高。又以广差乘乙高,以本高而一,所得加上广,即甲上广。又以袤差乘乙高,如本高而一,所得加上袤,即甲上袤。其上广、袤即乙下广、袤,台上广、袤即乙上广、袤。其后求广、袤,有增损者,皆放此(此应六因乙积,台高再乘,上下广差乘袤差而一。又以台高乘上广,广差而一,为上广之高。又以台高乘上袤,袤差而一,为上袤之高。以上广之高乘上袤之高,为小幂二。因下袤之高,为中幂一。凡下袤、下广之高,即是截高与上袤与上广之高相连并数。然此有中幂定有小幂一。又有上广之高乘截高,为幂一。又下广之高乘下袤之高,为大幂二。乘上袤之高为中幂一。其大幂之中又小幂一,复有上广、上袤之高各乘截高,为中幂各一。又截高自乘,为幂一。其中幂之内有小幂一。又上袤之高乘截高,为幂一。然则截高自相乘,为幂二,小幂六。又上广、上袤之高各三,以乘截高,为幂六。令皆半之,故以三乘小幂。又上广、上袤之高各三,令但半之,各得一又二分之一,故三之,二而一,诸幂乘截高为积尺)。$ \# w3 t) ]0 {5 Y% C; S- A
  求羡道广、袤、高,术曰:以均赋常积乘二县五十六乡,又六因,为积。又以道上广多下广数加上广少袤,为下广少袤。又以高多袤加下广少袤,为下广少高。以乘下广少袤,为隅阳幂。又以下广少上广乘之,为鳖隅积。以减积,余三而一,为实。并下广少袤与下广少高,以下广少上广乘之,鳖从横廉幂。三而一,加隅幂,为方法。又以三除上广多下广,以下广少袤、下广少高加之,为廉法,从。开立方除之,即下广。加广差,即上广。加袤多上广于上广,即袤。加高多袤,即道高。4 S" h  H& }$ `1 I
  求羡道均给积尺甲县受广、袤,术曰:以均赋常积乘甲县上十三乡,又六因,为积。以袤再乘之,以道上下广差乘台高为法而一,为实。又三因下广,以袤乘之,如上下广差而一,为都廉,从。开立方除之,即甲袤。以广差乘甲袤,本袤而一,以下广加之,即甲上广。又以台高乘甲袤,本袤除之,即甲高。
5 R+ v3 E; e0 }) _9 T8 ?: N5 q  假令筑堤,西头上、下广差六丈八尺二寸,东头上、下广差六尺二寸。东头高少于西头高三丈一尺,上广多东头高四尺九寸,正袤多于东头高四百七十六尺九寸。甲县六千七百二十四人,乙县一万六千六百七十七人,丙县一万九千四百四十八人,丁县一万二千七百八十一人。四县每人一日穿土九石九斗二升。每人一日筑常积一十一尺四寸十三分寸之六。穿方一尺得土八斗。古人负土二斗四升八合,平道行一百九十二步,一日六十二到。今隔山渡水取土,其平道只有一十一步,山斜高三十步,水宽一十二步,上山三当四,下山六当五,水行一当二,平道踟蹰十加一,载输一十四步。减计一人作功为均积。四县共造,一日役华。今从东头与甲,其次与乙、丙、丁。问:给斜、正袤与高,及下广,并每人一日自穿、运、筑程功,及堤上、下高、广各几何?
《太极物荷》:竞泥亭立玉节在,丝念开怀圆满长,来去乾坤并蒂敛,灵通物外太极随。

1374

主题

32

好友

17万

积分
     

大学士

江都郡公光禄大夫

Rank: 33Rank: 33Rank: 33Rank: 33Rank: 33

精华
25
名望
24658 点
功勋
3307 点

帥印 学士勋章 貢獻勳章

发表于 2017-3-19 09:56:08 |显示全部楼层
  `) E7 F# H0 S/ A! t2 r& Z( N
答曰:7 u8 B# X+ V( ?  _: M
  一人一日自穿、运、筑程功四尺九寸六分;
& L  L' x' v& Z& D* r) q  西头高三丈四尺一寸,: m- Z( ?5 o  I
  上广八尺,
6 m: z5 H: M$ r4 r) S$ p  下广七丈六尺二寸,: N# P9 e; s: o! ?, ^- s
  东头高三尺一寸,
, Y$ C7 B. Y) k  上广八尺,
# |& _/ L) R" l. _5 {( ]3 x  下广一丈四尺二寸,
4 G" r1 A6 z9 q0 p  正袤四十八丈,% `8 i2 \6 J% A, A6 P3 B
  斜袤四十八丈一尺;2 U8 W) s/ j  y  e
  甲县正袤一十九丈二尺,
! t$ P( M7 J6 S4 `  斜袤一十九丈二尺四寸,
" O3 K1 L5 V+ R7 F! f  下广三丈九尺,
4 j9 |1 C( I) {  高一丈五尺五寸;1 p9 e) ^- R, ]9 ]# o+ C
  乙县正袤一十四丈四尺;
# B) W+ K* x1 ?) n' f) o  斜袤一十四丈四尺三寸,
/ z; @6 P4 X: u* n! r% {  下广五丈七尺六寸,
: @# |1 i5 u& w8 K  高二丈四尺八寸;' E- W8 b, @9 f0 E3 z/ d4 c: z
  丙县正袤九丈六尺,7 ?2 E  \9 c) J" Q$ b
  斜袤九丈六尺二寸,
2 o2 ~, G$ N" `- T: P& d4 E  下广七尺,
' ^. b0 h. N7 [6 n0 C8 `( E0 B- N: ^  高三丈一尺;
# A3 g) u2 u  I, N  丁县正袤四丈八尺,, K* ]5 q4 r* J$ Z+ T; N; R# v
  斜袤四丈八尺一寸,( ^1 t4 E! C) ~, ]
  下广七丈六尺二寸,2 S* a, l. y+ k* L/ l  J
  高三丈四尺一寸。
0 m8 I% ]  w5 h' s/ \8 x- [  求人到程功运筑积尺,术曰:置上山四十步,下山二十五步,渡水二十四步,平道一十一步,踟蹰之间十加一,载输一十四步,一返计一百二十四步。以古人负土二斗四升八合,平道行一百九十二步,以乘一日六十二到,为实。却以一返步为法。除,得自运土到数也。又以一到负土数乘之,却以穿方一尺土数除之,得一人一日运动积。又以一人穿土九石九斗二升,以穿方一尺土数除之,为法。除之,得穿用人数。复置运功积,以每人一日常积除之,得筑用人数。并之,得六人。共成二十九尺七寸六分,以六人除之,即一人程功也。
* W0 `4 e1 P; T) m, N% ?  求堤上、下广及高、袤,术曰:一人一日程功乘总人,为堤积。以高差乘下广差,六而一,为鳖幂。又以高差乘小头广差,二而一,为大卧堑头幂。又半高差,乘上广多东头高之数,为小卧堑头幂。并三幂,为大小堑鳖率。乘正袤多小高之数,以减堤积,余为实。又置半高差及半小头广差与上广多小头高之数,并三差,以乘正袤多小头高之数。以加率为方法。又并正袤多小头高、上广多小高及半高差,兼半小头广差加之,为廉法,从。开方立除之,即小高。加差,即各得广、袤、高。又正袤自乘,高差自乘,并,而开方除之,即斜袤。2 T+ T: _- q# T4 Q
  求甲县高、广、正、斜袤,术曰:以程功乘甲县人,以六因取积,又乘袤幂。以下广差乘高差为法除之,为实。又并小头上下广,以乘小高,三因之,为垣头幂。又乘袤幂,如法而一,为垣方。又三因小头下广,以乘正袤,以广差除之,为都廉,从。开立方除之,得小头袤,即甲袤。又以下广差乘之,所得以正袤除之,所得加东头下广,即甲广。又以两头高差乘甲袤,以正袤除之,以加东头高,即甲高。又以甲袤自乘;以堤东头高减甲高,余自乘,并二位,以开方除之,即得斜袤。若求乙、丙、丁,各以本县人功积尺,每以前大高、广为后小高、主廉母自乘,为方母。廉母乘方母,为实母(此平堤在上,羡除在下。两高之差即除高。其除两边各一鳖腝,中一堑堵。今以袤再乘六因积,广差乘袤差而一,得截鳖腝袤,再自乘,为立方一。又堑堵袤自乘,为幂一。又三因小头下广,大袤乘之,广差而一,与幂为高,故为廉法。又并小头上下广,又三之,以乘小头高为头幂,意同六除。然此头幂,本乘截袤。又袤乘之,差相乘而一。今还依数乘除一头幂,为从。开立方除之,得截袤)。
《太极物荷》:竞泥亭立玉节在,丝念开怀圆满长,来去乾坤并蒂敛,灵通物外太极随。

1374

主题

32

好友

17万

积分
     

大学士

江都郡公光禄大夫

Rank: 33Rank: 33Rank: 33Rank: 33Rank: 33

精华
25
名望
24658 点
功勋
3307 点

帥印 学士勋章 貢獻勳章

发表于 2017-3-19 09:56:32 |显示全部楼层
求堤都积,术曰:置西头高,倍之,加东头高,又并西头上下广,半而乘之。又置东头高,倍之,加西头高,又并东头上下广,半而乘之。并二位积,以正袤乘之,六而一,得堤积也。
4 j+ U8 I1 G* s. T. K9 `& n  假令筑龙尾堤,其堤从头高、上阔以次低狭至尾。上广多,下广少,堤头上下广差六尺,下广少高一丈二尺,少袤四丈八尺。甲县二千三百七十五人,乙县二千三百七十八人,丙县五千二百四十七人。各人程功常积一尺九寸八分,一日役毕,三县共筑。今从堤尾与甲县,以次与乙、丙。问:龙尾堤从头至尾高、袤、广及各县别给高、袤、广各多少。
: p% g+ `. p9 c1 h3 T$ E  答曰:5 f/ o6 j* D' ~2 J
  高三丈,% [" L' G- ^0 u* w/ N8 a+ v  k
  上广三丈四尺,
3 `0 Q8 S& p) q& z2 s  下广一丈八尺,8 }% \/ N/ O, S. p
  袤六丈六尺;# c' ^+ h. Q6 t4 Z/ l* F) b
  甲县高一丈五尺,
  v7 [, R, s8 H0 V- F  I; p3 j  袤三丈三尺,! S) I8 h$ ]7 g2 T
  上广二丈一尺;
9 }- H5 s' d6 z( B9 Q+ C; R  乙县高二丈一尺,
: A' G0 `1 {  ]' h. z& R2 s% W  袤一丈三尺二寸,
4 P8 w  k6 y' g1 t  上广二丈二尺二寸;/ f( b! `9 s! Q$ X- v2 {: v# A
  丙县高三丈,袤一丈九尺八寸,
, W9 ^% u( d7 h! i7 u$ ]  上广二丈四尺。
7 M! G& s1 N4 L  求龙尾堤广、袤、高,术曰:以程功乘总人,为堤积。又六因之,为虚积。以少高乘少袤,为隅幂。以少上广乘之,为鳖隅积。以减虚积,余,三约之,所得为实。并少高、袤,以少上广乘之,为鳖从横廉幂。三而一,加隅幂,为方法。又三除少上广,以少袤、少高加之,为廉法,从。开立方除之,得下广。加差,即高、广、袤。+ E: l( C# n3 Y. N4 y; h
  求逐县均给积尺受广、袤,术曰:以程功乘当县人,当积尺。各六因积尺。又乘袤幂。广差乘高,为法。除之,为实。又三因末广,以袤乘之,广差而一,为都廉,从。开立方除之,即甲袤。以本高乘之,以本袤除之,即甲高。又以广差乘甲袤,以本袤除之,所得加末广,即甲上广。其甲上广即乙末广,其甲高即垣高。求实与都廉,如前。又并甲上下广,三之,乘甲高,又乘袤幂,以法除之,得垣方,从。开立方除之,即乙袤。余放此(此龙尾犹羡除也。其堑堵一,鳖腝一,并而相连。今以袤再乘积,广差乘高而一,所得截鳖腝袤再自乘,为立方一。又堑堵袤自乘,为幂一。又三因末广,以袤乘之,广差而一,与幂为高,故为廉法)。
$ t& Y$ q8 N+ z; \  假令穿河,袤一里二百七十六步,下广六步一尺二寸;北头深一丈八尺六寸,上广十二步二尺四寸;南头深二百四十一尺八寸;上广八十六步四尺八寸。运土于河西岸造漘,北头高二百二十三尺二寸,南头无高,下广四百六尺七寸五厘,袤与河同。甲郡二万二千三百二十人,乙郡六万八千七十六人,丙郡五万九千九百八十五人,丁郡三万七千九百四十四人。自穿、负、筑,各人程功常积三尺七寸二分。限九十六日役,河漘俱了。四郡分共造漘,其河自北头先给甲郡,以次与乙,合均赋积尺。问:逐郡各给斜、正袤,上广及深,并漘上广各多少?
  `5 k7 P/ N. ?0 f( @( v6 u  答曰:
6 j% c! t/ ^% Q& v% g  \/ K" T  漘上广五丈八尺二寸一分;4 o+ D' p" H3 z' B% ?9 Y- I5 f) L
  甲郡正袤一百四十四丈,( h$ W( t8 U$ m" h, |1 O! E- R
  斜袤一百四十四丈三尺,
! b0 B: l+ g1 u3 d9 q" Y  上广二十六丈四寸,
* C  }: P: D1 ~  c5 N0 d: P( @  深一十一丈一尺六寸;. J& r4 q) Q- f/ r1 q+ A
  乙郡正袤一百一十五丈二尺,3 k/ p# f  D% S6 t. Q
  斜袤一百一十五丈四尺四寸,
' a# i5 n1 A8 B) g* G1 l& {( F( q  上广四十丈九尺二寸,9 m, K1 U* y4 z$ [
  深一十八丈六尺;
* C% W: y8 D4 t  h" ]2 x  丙郡正袤五十七丈六尺,
- @! |. [1 O6 ]! S( g4 L  斜袤五十七丈七尺二寸,
9 U( m0 z; j/ X: }1 j# @3 _, P  上广四十八丈三尺六寸,
9 Z$ A3 w7 ]5 i# b' O; e  深二十二丈三尺二寸,
. I( J+ C# m( O" N  丁郡正袤二十八丈八尺,
* Q: O7 b# d1 c7 ^! s: j1 Q. W; N  斜袤二十八丈八尺六寸,
+ [5 s. H4 v( w. E- u  上广五十二丈八寸,4 k0 q# P2 m. O4 @
  深二十四丈一尺八寸。- @1 J9 g+ c6 U
《太极物荷》:竞泥亭立玉节在,丝念开怀圆满长,来去乾坤并蒂敛,灵通物外太极随。

1374

主题

32

好友

17万

积分
     

大学士

江都郡公光禄大夫

Rank: 33Rank: 33Rank: 33Rank: 33Rank: 33

精华
25
名望
24658 点
功勋
3307 点

帥印 学士勋章 貢獻勳章

发表于 2017-3-19 09:57:00 |显示全部楼层
术曰:如筑堤术入之(覆堤为河,彼注甚明,高深稍殊,程功是同,意可知也)。以程功乘甲郡人,又以限日乘之,四之,三而一,为积。又六因,以乘袤幂。以上广差乘深差,为法。除之,为实。又并小头上、下广,以乘小头深,三之,为垣头幂。又乘袤幂,以法除之,为垣方。三因小头上广,以乘正袤,以广差除之,为都廉,从。开立方除之,即得小头袤,为甲袤。求深、广,以本袤及深广差求之。以两头上广差乘甲袤,以本袤除之,所得加小头上广,即甲上广。以小头深减南头深,余以乘甲袤,以本袤除之,所得加小头深,即甲深。又正袤自乘,深差自乘,并,而开方除之,即斜袤。若求乙、丙、丁,每以前大深、广为后小深、广,准甲求之,即得。& W7 ?) ^  @  o9 l. W" O
  求漘上广,术曰:以程功乘总人,又以限日乘之,为积。六因之,为实。以正袤除之,又以高除之,所得以下广减之,余又半之,即漘上广。) ^/ K1 H1 l6 G. k' L
  假令四郡输粟,斛法二尺五寸,一人作功为均。自上给甲,以次与乙。其甲郡输粟三万八千七百四十五石六斗,乙郡输粟三万四千九百五石六斗,丙郡输粟,二万六千二百七十石四斗,丁郡输粟一万四千七十八石四斗。四郡共穿窖,上袤多于上广一丈,少于下袤三丈,多于深六丈,少于下广一丈。各计粟多少,均出丁夫。自穿、负、筑,冬程人功常积一十二尺,一日役。问:窖上下广、袤、深,郡别出人及窖深、广各多少?
/ @$ H0 b% N1 x* S  答曰:
9 T$ M7 H8 V! F' ?, S$ }4 h0 V  窖上广八丈,. }, B& C# x0 x0 Z3 F
  上袤九丈,/ O2 l+ H9 S5 q% ]( ~  r
  下广一十丈,, i1 Z/ P$ q  G1 n
  下袤一十二丈,# x6 j6 y2 D6 v( u2 I% I" o3 O' ?
  深三丈;
' X& `- a/ H( U! ]; v# T: k; c5 g0 Z  甲郡八千七十二人,. P( \: K- ~6 n( X
  深一十二尺,
9 }& a0 F0 M2 `" z( X) A8 Q  ]  下袤一十丈二尺,8 K. q5 J" M! a1 @" b8 V6 a% N
  广八丈八尺;0 C! f' ]% U% k& O
  乙郡七千二百七十二人,
( f! \& c& ]9 U- G3 D  深九尺,
1 o9 p& S" @9 h: X  下袤一十一丈一尺,
# k" T2 f+ `" E' ?7 b  广九丈四尺;
& u) {# ~3 \& t, r  丙郡五千四百七十三人,  R) M4 D/ _9 Y1 q1 V6 d
  深六尺,下袤一十一丈七尺,! v+ B, B! y( D$ Q+ c6 ?% u
  广九丈八尺;
" ]" d0 k1 o& u" h9 F% z/ i  丁郡二千九百三十三人,
+ g1 ^2 w! G; V/ f2 h1 `% `  X3 n  深三尺,* P! a7 W0 E- D5 s
  下袤一十二丈,
+ S, u7 c4 h4 o- s* k6 ^  广一十丈。
% V7 e+ ~/ j  @! f. O; o5 Z5 R/ B  求窖深、广、袤,术曰:以斛法乘总粟,为积尺。又广差乘袤差,三而一,为隅阳幂。乃置堑上广,半广差加之,以乘堑上袤,为隅头幂。又半袤差,乘堑上广,以隅阳幂及隅头幂加之,为方法。又置堑上袤及堑上广,并之,为大广。又并广差及袤差,半之,以加大广,为廉法,从。开立方除之,即深。各加差,即合所问。. u0 \: t- O3 F( z9 }1 H
  求均给积尺受广、袤、深,术曰:如筑台术入之。以斛法乘甲郡输粟,为积尺。又三因,以深幂乘之,以广差乘袤差而一,为实。深乘上广,广差而一,为上广之高。深乘上袤,袤差而一,为上袤之高。上广之高乘上袤之高,三之,为方法。又并两高,三之,二而一,为廉法,从。开立方除之,即甲深。以袤差乘之,以本深除之,所加上袤,即甲下袤。以广差乘之,本深除之,所得加上广,即甲下广。若求乙、丙、丁,每以前下广、袤为后上广、袤,以次皆准此求之,即得。若求人数,各以程功约当郡积尺。7 R8 y6 v2 x/ z3 ^: A- f
《太极物荷》:竞泥亭立玉节在,丝念开怀圆满长,来去乾坤并蒂敛,灵通物外太极随。

1374

主题

32

好友

17万

积分
     

大学士

江都郡公光禄大夫

Rank: 33Rank: 33Rank: 33Rank: 33Rank: 33

精华
25
名望
24658 点
功勋
3307 点

帥印 学士勋章 貢獻勳章

发表于 2017-3-19 09:57:27 |显示全部楼层
3 @( z. [6 m% ]/ ~, m4 H* b
假令亭仓上小下大,上下方差六尺,高多上方九尺,容粟一百八十七石二斗。今已运出五十石四斗。问:仓上下方、高及余粟深、上方各多少?
  N. y1 |3 ~( B1 z% P# [  答曰:
. o" U; C3 B5 ^* r  上方三尺,& a  s- G8 ]3 |# J1 j
  下方九尺,0 r$ Z% h! k  X9 Q+ p7 N; L9 U5 R( {
  高一丈二尺;% z2 f- `$ j1 n) |" R
  余粟深、上方俱六尺。4 ~/ g5 X& a" C8 G3 B5 E& Z# x
  求仓方、高,术曰:以斛法乘容粟,为积尺。又方差自乘,三而一,为隅阳幂。以乘截高,以减积,余为实。又方差乘截高,加隅阳幂,为方法。又置方差,加截高,为廉法,从。开立方除之,即上方。加差,即合所问。
: j( D8 o% `6 F" Z: E  求余粟高及上方,术曰:以斛法乘出粟,三之,以乘高幂,令方差幂而一,为实(此是大、小高各自乘,各乘取高。是大高者,即是取高与小高并)。高乘上方,方差而一,为小高。令自乘,三之,为方法。三因小高,为廉法,从。开立方除之,得取出高。以减本高,余即残粟高。置出粟高,又以方差乘之,以本高除之,所得加上方,即余粟上方(此本术曰:上下方相乘,又各自乘,并以高乘之,三而一。今还元,三之,又高幂乘之,差幂而一,得大小高相乘,又各自乘之数。何者?若高乘下方,方差而一,得大高也。若高乘上方,方差而一,得小高也。然则斯本下方自乘,故须高自乘乘之,差自乘而一,即得大高自乘之数。小高亦然。凡大高者,即是取高与小高并相连。今大高自乘为大方。大方之内即有取高自乘幂一,隅头小高自乘幂一。又其两边各有以取高乘小高,为幂二。又大小高相乘,为中方。中方之内即有小高乘取高幂一。又小高自乘,即是小方之幂又一。则小高乘大高,又各自乘三等幂,皆以乘取高为立积。故三因小幂为方,及三小高为廉也)。" k- ]; c# t7 {1 L$ k8 C
  假令刍甍上袤三丈,下袤九丈,广六丈,高一十二丈。有甲县六百三十二人,乙县二百四十三人。夏程人功当积三十六尺,限八日役。自穿筑,二县共造。今甲县先到。问:自下给高、广、袤、各多少?
4 t& t4 N- S+ y' G# V  S  答曰:
2 @( |/ F! F8 W/ `( H  高四丈八尺,5 d$ P. g( ~3 F8 e7 `. u8 v
  上广三丈六尺,
5 C, {9 S4 ~; Q+ v: |6 c4 D& q  袤六丈六尺。
! u' a/ k0 h7 {2 ^  求甲县均给积尺受广、袤,术曰:以程功乘乙县人数,又以限日乘之,为积尺。以六因之,又高幂乘之,又袤差乘广而一,所得又半之,为实。高乘上袤,袤差而一,为上袤之高。三因上袤之高,半之,为廉法,从。开立方除之,得乙高。以减甍高,余即甲高。求广、袤,依率求之(此乙积本倍下袤,上袤从之。以下广及高乘之,六而一,为一甍积。今还元须六因之,以高幂乘之,为实。袤差乘广而一,得取高自乘以乘三上袤之高,则三小高为廉法,各以取高为方。仍有取高为立方者二,故半之,为立方一。又须半廉法)。3 j' f% T$ h6 K% ~6 x* H
  假令圆囤上小下大,斛法二尺五寸,以率径一周三。上下周差一丈二尺,高多上周一丈八尺,容粟七百五斛六斗。今已运出二百六十六石四斗。问:残粟去口、上下周、高各多少?4 R4 ~& ?2 W& N! n$ n9 s
  答曰:
+ g6 _7 I" J% ~7 \, I' G  一周一丈八尺,) Y4 U' N+ z( p' }" X
  下周三丈,
6 n5 O- }! d# g/ W3 d( n9 K  高三丈六尺,
& z8 T( e) W/ v& M  u  去口一丈八尺,3 ]" y! n; Y. F' t( C& ?
  粟周二丈四尺。# C' {# Q4 b% D$ E3 Y
  求圆囤上下周及高,术曰:以斛法乘容粟,又三十六乘之,三而一,为方亭之积。又以周差自乘,三而一,为隅阳幂。以乘截高,以减亭积,余为实。又周差乘截高,加隅阳幂,为方法。又以周差加截高,为廉法,从。开立方除之,得上周。加差,而合所问。
+ b9 ^& E1 q. g  求粟去口,术曰:以斛法乘出斛,三十六乘之,以乘高幂,如周差幂而一,为实。高乘上周,周差而一,为小高。令自乘,三之,为方法。三因小高,为廉法,从。开立方除之,即去口(三十六乘讫,即是截方亭,与前方窖不别)。置去口,以周差乘之,以本高除之,所得加上周,即粟周。! U8 p5 s/ S3 L% g6 v
  假令有粟二万三千一百二十斛七斗三升,欲作方仓一,圆窖一,盛各满中而粟适尽。令高、深等,使方面少于圆径九寸,多于高二丈九尺八寸,率径七,周二十二。问:方、径、深多少?% M, I) I7 m( d5 y
  答曰:
6 N. D; c, Z7 U3 r$ [5 i. V  仓方四丈五尺三寸(容粟一万二千七百二十二斛九斗五升八合),
6 f* E: ?+ D# M1 u  ?3 V  窖径四丈六尺二寸(容粟一万三百九十七石七斗七升二合),4 l( G) t" i1 i* {! X6 C7 L) b9 |
  高与深各一丈五尺五寸。
《太极物荷》:竞泥亭立玉节在,丝念开怀圆满长,来去乾坤并蒂敛,灵通物外太极随。

1374

主题

32

好友

17万

积分
     

大学士

江都郡公光禄大夫

Rank: 33Rank: 33Rank: 33Rank: 33Rank: 33

精华
25
名望
24658 点
功勋
3307 点

帥印 学士勋章 貢獻勳章

发表于 2017-3-19 09:57:53 |显示全部楼层
求方、径高深,术曰:十四乘斛法,以乘粟数,二十五而一,为实。又倍多加少,以乘少数,又十一乘之,二十五而一,多自乘加之,为方法。又倍少数,十一乘之,二十五而一,又倍多加之,为廉法,从。开立方除之,即高、深。各加差,即方径(一十四乘斛法,以乘粟为积尺。前一十四馀,今还元,一十四乘。为径自乘者,是一十一;方自乘者,是一十四。故并之为二十五。凡此方、圆二径长短不同,二径各自乘为方,大小各别。然则此堑方二丈九尺八寸,堑径三丈七寸,皆成方面。此应堑方自乘,一十四乘之;堑径自乘,一十一乘之,二十五而一,为隅幂,即方法也。但二隅幂皆以堑数为方面。今此术就省,倍小隅方,加差为矩袤,以差乘之为矩幂。一十一乘之,二十五而一。又差自乘之数,即是方圆之隅同有此数,若二十五乘之,还须二十五除。直以差自乘加之,故不复乘除。又须倍二廉之差,一十一乘之,二十五而一,倍差加之,为廉法,不复二十五乘除之也)。/ E+ z( M0 N; ]
  还元,术曰:仓方自乘,以高乘之,为实。圆径自乘,以深乘之,一十一乘,一十四而一,为实。皆为斛法除之,即得容粟(斛法二尺五寸)。. I: s, L$ r* J, C' [$ l: w
  假令有粟一万六千三百四十八石八斗,欲作方仓四、圆窖三,令高、深等,方面少于圆径一丈,多于高五尺,斛法二尺五寸,率径七,周二十二。问:方、高、径多少?
* ^" Q8 g3 `( e7 s  O- g  答曰:, @) i; B5 i0 }
  方一丈八尺,
! Q% s; P- x! ?3 h& C3 f8 ]1 V  高深一丈三尺,0 A* Y) R3 N2 z* z) ~3 z: @% r
  圆径二丈八尺。
4 f! [  E1 T5 q  术曰:以一十四乘斛法,以乘粟数,如八十九而一,为实。倍多加少,以乘少数,三十三乘之,八十九而一,多自乘加之,为方法。又倍少数,以三十三乘之,八十九而一,倍多加之,为廉法,从。开立方除之,即高、深。各加差,即方径(一十四乘斛法,以乘粟,为径自乘及方自乘数与前同。今方仓四,即四因十四。圆窖三,即三因十一。并之,为八十九,而一。此堑径一丈五尺,堑方五尺,以高为立方。自外意同前)。* @- I1 ]' u. Y0 \2 X  d1 ]4 B! O
  假令有粟三千七十二石,欲作方仓一、圆窖一,令径与方等,方于窖深二尺,少于仓高三尺,盛各满中而粟适尽(圆率、斛法并与前同)。问:方、径、高、深各多少?0 r  R/ d+ r4 g- A
  答曰:
! H# w' a" w6 g  X  方、径各一丈六尺,
( Q" |; o9 h$ [8 e  高一丈九尺,
0 s$ P7 i0 N. u. b$ w- t" O  深一丈四尺。* F( }  Z; \) }
  术曰:三十五乘粟,二十五而一,为率。多自乘,以并多少乘之,以乘一十四,如二十五而一,所得以减率,余为实。并多少,以乘多,倍之,乘一十四,如二十五而一,多自乘加之,为方法。又并多少,以乘一十四,如二十五而一,加多加之,为廉法,从。开立方除之,即窖深。各加差,即方、径、高(截高五尺,堑径及方二尺,以深为立方。十四乘斛法,故三十五乘粟。多自乘并多少乘之,为截高隅积,即二廉,方各二尺,长五尺。自外意旨皆与前同)。$ b5 i$ O6 a/ N  q; o
  假令有粟五千一百四十石,欲作方窖、圆窖各一,令口小底大,方面于圆径等,两深亦同,其深少于下方七尺,多于上方一丈四尺,盛各满中而粟适尽(圆率、斛法并与前同)。问:方、径、深各多少?
& a# B% ~3 H9 n  答曰:- ]- S7 L* n( c7 j* B
  上方、径各七尺,
+ y5 ], I2 e+ U4 M% C( f- _  下方、径各二丈八尺,
" ]8 @" X# K7 g8 d% M' b  深各二丈一尺。
; U4 ?3 X# V+ f' T  术曰:以四十二乘斛法,以乘粟,七十五而一,为方亭积。令方差自乘,三而一,为隅阳幂,以截多乘之,减积,余为实。以多乘差,加幂,为方法。多加差,为廉法,从。开立方除之,即上方。加差,即合所问(凡方亭,上下方相乘,又各自乘,并以乘高,为虚。命三而一,为方亭积。若圆亭上下径相乘,又各自乘,并以乘高,为虚。又十一乘之,四十二而一,为圆亭积。今方、圆二积并在一处,故以四十二复乘之,即得圆虚十一,方虚十四,凡二十五,而一,得一虚之积。又三除虚积,为方亭实。乃依方亭复问法,见上下方差及高差与积求上下方高术入之,故三乘,二十五而一)。% ~4 I- y* Y" Y! l7 v* j( W
《太极物荷》:竞泥亭立玉节在,丝念开怀圆满长,来去乾坤并蒂敛,灵通物外太极随。

1374

主题

32

好友

17万

积分
     

大学士

江都郡公光禄大夫

Rank: 33Rank: 33Rank: 33Rank: 33Rank: 33

精华
25
名望
24658 点
功勋
3307 点

帥印 学士勋章 貢獻勳章

发表于 2017-3-19 09:58:17 |显示全部楼层
. }) u1 M3 {! `6 K8 |/ X' s
假令有粟二万六千三百四十二石四斗,欲作方窖六、圆窖四,令口小底大,方面与圆径等,其深亦同,令深少於下方七尺,多於上方一丈四尺,盛各满中而粟适尽(圆率、斛法并与前同)。问上下方、深数各多少?
" \* L2 B1 X, Z# }3 D- y/ _, Y  答曰:
- f5 E) ?1 d. E5 @* M/ |8 y9 i5 i  方窖上方七尺,
8 ~  h, K4 A9 |  下方二丈八尺,
& ^, x' ?) M7 s0 Z2 n6 a. w- T  深二丈一尺,7 h+ ~  s5 @* y9 d
  圆窖上下径、深与方窖同。/ c5 {1 @6 L9 {
  术曰:以四十二乘斛法,以乘粟,三百八十四而一,为方亭积尺。令方差自乘,三而一,为隅阳幂。以多乘之,以减积,余为实。以多乘差,加幂,为方法。又以多加差,为廉法,从。开立方除之,即上方。加差,即合所问(今以四十二乘。圆虚十一者四,方虚十四者六,合一百二十八虚,除之,为一虚之积。得者仍三而一,为方亭实积。乃依方亭见差复问求之,故三乘,一百二十八除之)。6 S3 C* ~, {1 J8 [1 W% b
  假令有句股相乘幂七百六十五分之一,弦多于句三十六十分之九。问:三事各多少?
1 z! \  Q" F* O) A8 ^  答曰:6 ]/ M; I/ i- x9 p" P
  句十四二十分之七,, O/ Q3 V$ e5 s! C% X* F( \, l
  股四十九五分之一,
( t; Z3 }  _# p& J! e" ~: j. l, C  弦五十一四分之一。
' R0 K! O  }+ X3 t+ [! [8 s  术曰:幂自乘,倍多数而一,为实。半多数,为廉法,从。开立方除之,即句。以弦多句加之,即弦。以句除幂,即股(句股相乘幂自乘,与句幂乘股幂积等。故以倍句弦差而一,得一句与半差之共乘句幂,为方。故半差为廉法,从,开立方除之。按:此术原本不全,今依句股义拟补十三字)。
  ~- g8 i2 o; @! ^% p5 j9 K  假令有句股相乘幂四千三十六五分之□,股少于弦六五分之一。问:弦多少?(按:此问原本缺二字,今依文补一股字,其股字上之□系所设分数,未便悬拟,今姑阙之)。- L8 Z5 x/ c, u/ T& U
  答曰:弦一百一十四十分之七。
! c; k: b5 u; K2 Y7 Y5 |  术曰:幂自乘,倍少数而一,为实。半少,为廉法,从。开立方除之,即股。加差,即弦。
* R, n; r! O  N' U4 U  假令有句弦相乘幂一千三百三十七二十分之一,弦多股一、十分之一。问:股多少?# |9 z0 ~9 L2 q# c! @& q+ e4 \4 f1 X# p
  答曰:九十二五分之二。" j& C& t: J0 e( B8 f2 S
  术曰:幂自乘,倍多而一,为立幂。又多再自乘,半之,减立幂,余为实。又多数自乘,倍之,为方法。又置多数,五之,二而一,为廉法,从。开立方除之,即股(句弦相乘幂自乘,即句幂乘弦幂之积。故以倍股弦差而一,得一股与半差□□□□□为方令多再自乘半之为隅□□□□□横虚二立廉□□□□□□□□□□□倍之为从隅□□□□□□□□□□□多为上广即二多□□□□□□□□□法故五之二而一)。
8 Q" c/ v. d6 |" D7 O! |  案:此术脱简既多,法亦烦扰,宜云幂自乘,多数而一,所得四之,为实。多为廉法,从。立方开之,得减差,半之,即股(幂自乘,与勾幂弦幂相乘积等。令勾幂变为股弦并乘股弦差,故差而一,所得乃股弦并乘弦幂)。" c- }5 g+ p9 I( l4 ?
  假令有股弦相乘幂四千七百三十九五分之三,句少于弦五十四五分之二。问:股多少?+ A* u( H  Y: V9 o: c
  答曰:六十八。7 X5 X& V" D! I! {' E
  术曰:幂自乘,倍少数而一,为立幂。又少数再自乘,半之,以减立幂,余为实。又少数自乘,倍之,为方法。又置少数,五之,二而一,为廉法,从。开立方除之,即句。加差,即弦。弦除幂,即股。  U! f6 d+ h4 T) C* p6 e  K1 L
  假令有股弦相乘幂七百二十六,句七、十分之七。问:股多少?
! F8 A6 T: _/ o4 U, b- s- M  答曰:股二十六五分之二。
  U0 }5 I' X+ {7 {  术曰:幂自乘,为实。句自乘,为方法,从。开方除之,所得又开方,即股(□□□□□□□□□□□□□□数亦是股□□□□□□□□□□□□为长以股□□□□□□□□□□□□得股幂又开□□□□□□□□□□□股北分母常……)4 P$ {9 \1 x. |( C
  假令有股十六二分之一,句弦相乘幂一百六十四二十五分之十四。问:句多少?) o& p' x/ [5 U
  答曰:句八、五分之四。0 {& E$ u6 h8 _7 Y
  术曰:幂自乘,为实。股自乘,为方法,从。开方除之,所得又开方,即句。
3 d4 J$ q5 x/ P/ u- ^3 S! t" B) f& b
3 \0 x9 {. ^$ U/ \缉古算经跋
2 ~! Q  m" z. Y, t  x1 u" F, H3 C4 {2 f% B, q+ `! s5 I) A
  按《唐书·选举志》制科之目,明算居一,其定制云:凡算学,孙子、五曹共限一岁,九章、海岛共三岁,张邱建、夏侯阳各一岁,周髀、五经算共一岁,缀术四岁,缉古三岁,记遗三等数皆兼习之。窃惟数学为六艺之一,唐以取士共十经。周髀家塾曾刊行之,余则世有不能举其名者。扆半生求之,从太仓王氏得孙子、五曹、张邱建、夏侯阳四种,从章邱李氏得周髀、缉古二种,后从黄俞邰又得九章。皆元丰七年秘书省刊板,字书端楷,雕镂精工,真世之宝也。每卷后有秘书省官衔姓名一幅,又一幅宰辅大臣,自司马相公而下俱列名于后,用见当时郑重若此。因求善书者刻画影摹,不爽毫末,什袭而藏之。但焉得海岛、五经、缀术三种,竟成完璧,并得好事者刊刻流布,俾数学不绝于世,所深愿也。9 ]4 E% o6 ?3 Q( e& Z* J1 c

$ p) t( m4 C, G: b/ _康熙甲子仲秋汲古后人毛扆谨识) b$ ~( b: l0 ], F3 @4 E; @
《太极物荷》:竞泥亭立玉节在,丝念开怀圆满长,来去乾坤并蒂敛,灵通物外太极随。
您需要登录后才可以回帖 登录 | 注册

回顶部